The Wirtinger Presentation

Jamie Pearce

Fall 2020

The study of knots is an active area of modern mathematical research. Much of their study concerns the creation and computation of various knot invariants - algebraic objects associated to each knot which can be used to distinguish non-equivalent knots from each other. Many such invariants exist, but a well known one is the fundamental group of the complement of a knot, otherwise called the knot group. In this paper we present a computation of this invariant for a knot embedded in 3-space.

The Wirtinger presentation is a finite group presentation of the fundamental group of the complement of a knot in 3 -space. First, we write down some definitions

Definition. A knot is an embedding of S^{1} in R^{3}.
Definition. The fundamental group of X based at $x_{0}, \pi_{1}\left(X, x_{0}\right)$, is the set of equivalence classes of loops based at x_{0} with binary operation $[\alpha][\gamma]=[\alpha \cdot \gamma]$.

Definition. A $\boldsymbol{C W}$-complex is any space X which can be constructed by starting off with a discrete collection of points called 0-cells that make up the 0 -skeleton X^{0}, then attaching 1-cells e_{α}^{1} to X^{0} along their boundaries S^{0}, writing X^{1} for the 1-skeleton obtained by attaching the 1-cells to X^{0}, then attaching 2-cells e_{α}^{2} to X^{1} along their boundaries S^{1}, writing X^{2} for the 2-skeleton, and so on, giving spaces X^{n} for every n. A CW-complex is any space that has this sort of decomposition into subspaces X^{n} built up in such a way that the X^{n} s exhaust all of X. In particular, X^{n} may be built from X^{n-1} by attaching infinitely many n-cells e_{α}^{n}, and the attaching maps $S^{n-1} \rightarrow X^{n-1}$ may be any continuous maps.

Definition. A deformation retract of a space X onto a subspace A is a family of maps $f_{t}: X \rightarrow X, t \in I$, such that $f_{0}=i d$ (the identity map), $f_{1}(X)=A$, and $f_{t} \mid A=i d$ for all t. The family f_{t} should be continuous in the sense that the associated map $X \times I \rightarrow X,(x, t) \mapsto f_{t}(x)$ is continuous.

To begin, let K be a smooth or piecewise linear knot in \mathbb{R}^{3}. Position the knot to lie almost flat, so that K consists of finitely many disjoint $\operatorname{arcs} \alpha_{i}$ and finitely many disjoint $\operatorname{arcs} B_{l}$ where K crosses over itself as shown in the first figure above. Now, we build a 2 -dimensional CW-complex X that is a deformation retract
of $\mathbb{R}^{3}-K$. First, just above each arc α_{i} place a long, thin rectangular strip R_{i}, curved to run parallel to α_{i} along the full length of α_{i} and arched so that the two long edges of R_{i} are identified with points of the rectangle T. This is shown in the second figure. Any arcs B_{l} that cross over α_{i} are positioned to lie in R_{i}. Then, over each are B_{l} put a square S_{l}, bent downward along its four edges so that these edges are identified with points of three strips R_{i}, R_{j}, and R_{k} as in the third figure. The knot K is now a subspace of X, but after we lift K up slightly into the complement of X, it becomes a deformation retract of $\mathbb{R}^{3}-K$.

Theorem. The fundamental group of $\mathbb{R}^{3}-K, \pi_{1}\left(\mathbb{R}^{3}-K\right)$, has a group presentation with one generator x_{i} for each strip R_{i} and one relation of the form $x_{i} x_{j} x_{i}^{-1}=x_{k}$ for each square S_{l}.

Notice that the loops based at p at opposite ends of the strips are homotopy equivalent. Intuitively, the yellow loop can continuously deform into the green loop via the strip R_{i}. Similarly, the pink loop can continuously deform into the blue loop via R_{j} and the purple loop can continuously deform into the orange loop via R_{k}.

After attaching the square S_{l}, we see that the loop x_{k} is homotopy equivalent to the loop $x_{i} x_{j} x_{i}^{-1}$ via S_{l}.

In the proof of the Theorem we will use the following Proposition and figures:
Proposition 1. (Proposition 1.26 in [1]) Suppose we attach a collection of 2-cells e_{α}^{2} to a path-connected space X via maps $\varphi_{\alpha}: S^{1} \rightarrow X$, producing a space Y. If s_{0} is a basepoint of S^{1} then φ_{α} determines a loop based at $\varphi_{\alpha}\left(s_{0}\right)$ called φ_{α}. For different α 's the basepoints of the loops φ_{α} may vary. Choose a basepoint $x_{0} \in X$ and a path γ_{α} in X from x_{0} to $\varphi_{\alpha}\left(s_{0}\right)$ for each α. Then $\gamma_{\alpha} \varphi_{\alpha} \gamma_{\alpha}^{-1}$ is a loop at x_{0} where $\gamma_{\alpha}^{-1}(t)=\gamma_{\alpha}(1-t)$ is the path inverse. The inclusion $X \hookrightarrow Y$ induces a surjection $\pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, x_{0}\right)$ whose kernel is the normal subgroup N generated by all the loops $\gamma_{\alpha} \varphi_{\alpha} \gamma_{\alpha}^{-1}$ for varying α. Thus, $\pi_{1}(Y) \cong \pi_{1}(X) / N$.

Figure A

Figure B

Proof. It is sufficient to prove $\pi_{1}(X, p) \cong\left\langle x_{1}, x_{2}, x_{3} \mid x_{1} x_{2} x_{1}^{-1}=x_{3}\right\rangle$. Let Z be the one-dimensional space in Figure A. Notice that $\pi_{1}(Z, p) \cong\left\langle x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right\rangle$ where the loops are defined as

$$
\begin{gathered}
x=a_{3} a_{1} c_{1} b_{1} a_{1}^{-1} a_{3}^{-1} \\
y=a_{2} c_{2} b_{2} a_{2}^{-1} \\
z=a_{3} b_{3} \\
x^{\prime}=a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime} a_{1}^{\prime-1} \\
y^{\prime}=a_{2} a_{2}^{\prime} c_{2}^{\prime} b_{2}^{\prime} a_{2}^{\prime-1} a_{2}^{-1} \\
z^{\prime}=a_{3}^{\prime} b_{3}^{\prime} c_{3}^{\prime} a_{3}^{\prime-1} .
\end{gathered}
$$

Next, attach the 2-cells R_{1}, R_{2}, and R_{3} to Z in the following way: attach R_{1} via the homomorphism $\varphi_{1}: S^{1} \rightarrow \mathbb{Z}$ where $\varphi_{1}=a_{1}^{\prime} b_{1}^{\prime} d_{1} c_{2} d_{4}^{-1} c_{1}^{-1} a_{1}^{-1} a_{3}^{-1}, R_{2}$ via the homomorphism $\varphi_{2}: S^{1} \rightarrow \mathbb{Z}$ where $\varphi_{2}=$ $a_{2}^{\prime} b_{2}^{\prime-1} d_{2} b_{2}$, and R_{3} via the homomorphism $\varphi_{3}: S^{1} \rightarrow \mathbb{Z}$ where $\varphi_{3}=b_{3}^{-1} d_{3}^{-1} c_{3}^{\prime} a_{3}^{\prime-1}$. Now we have the space Y shown in Figure B. By Proposition $1, \pi_{1}(Y, p) \cong \pi_{1}(Z, p) / N$ where $N=\left\langle\varphi_{1}, a_{2} \varphi_{2} a_{2}^{-1}, \varphi_{3}\right\rangle$. Let $r_{1}=a_{1}^{\prime} c_{1}^{\prime-1} d_{1} c_{2} d_{4}^{-1} b_{1} a_{1}^{-1} a_{3}^{-1}, r_{2}=a_{2} a_{2}^{\prime} c_{2}^{\prime} d_{2} c_{2}^{-1} a_{2}^{-1}$, and $r_{3}=a_{3} d_{3}^{-1} b_{3}^{\prime-1} a_{3}^{\prime-1}$ such that $x^{\prime} r_{1} x^{-1}=$ $\left(a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime} a_{1}^{\prime-1}\right)\left(a_{1}^{\prime} c_{1}^{\prime-1} d_{1} c_{2} d_{4}^{-1} b_{1} a_{1}^{-1} a_{3}^{-1}\right)\left(a_{3} a_{1} b_{1}^{-1} c_{1}^{-1} a_{1}^{-1} a_{3}^{-1}\right)=a_{1}^{\prime} b_{1}^{\prime} d_{1} c_{2} d_{4}^{-1} c_{1}^{-1} a_{1}^{-1} a_{3}^{-1}=\varphi_{1}, y^{\prime-1} r_{2} y=$ $\left(a_{2} a_{2}^{\prime} b_{2}^{\prime-1} c_{2}^{\prime-1} a_{2}^{\prime-1} a_{2}^{-1}\right)\left(a_{2} a_{2}^{\prime} c_{2}^{\prime} d_{2} c_{2}^{-1} a_{2}^{-1}\right)\left(a_{2} c_{2} b_{2} a_{2}^{-1}\right)=a_{2} a_{2}^{\prime} b_{2}^{\prime-1} d_{2} b_{2} a_{2}^{-1}=a_{2} \varphi_{2} a_{2}^{-1}$, and $z^{-1} r_{3} z^{\prime}=$ $\left(b_{3}^{-1} a_{3}^{-1}\right)\left(a_{3} d_{3}^{-1} b_{3}^{\prime-1} a_{3}^{\prime-1}\right)\left(a_{3}^{\prime} b_{3}^{\prime} c_{3}^{\prime} a_{3}^{\prime-1}\right)=\varphi_{3}$. Since r_{1}, r_{2}, r_{3} are homotopic to the constant path at p, we get that $\varphi_{1} \simeq x^{\prime} x^{-1}, a_{2} \varphi_{2} a_{2}^{-1} \simeq y^{\prime-1} y$, and $\varphi_{3} \simeq z^{-1} z^{\prime}$. Therefore, $\pi_{1}(Y, p) \cong\left\langle x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \mid x^{\prime} x^{-1}, y^{\prime-1} y, z^{-1} z^{\prime}\right\rangle \cong$ $\langle x N, y N, z N\rangle \cong\langle x, y, z\rangle$. The loops x, y, z are shown in Figure B.

Now, we contruct the space X by adding a 2 -cell S_{1} to the space Y via the homomorphism $\phi_{1}=$ $e_{1} e_{2} e_{3} e_{4}$ where $e_{1}, e_{2}, e_{3}, e_{4}$ are the edges of the square S_{1} orientated counterclockwise starting at p. Then $\phi_{1} \simeq x y^{-1} x^{-1} z$. By Proposition $1, \pi_{1}(X, p) \cong \pi_{1}(Y, p) / M$ where $M=\left\langle x y^{-1} x^{-1} z\right\rangle$. Thus, $\pi_{1}(X, p) \cong$ $\left\langle x, y, z \mid x y^{-1} x^{-1} z\right\rangle$. Finally, note that $\left\langle x y^{-1} x^{-1} z\right\rangle=\left\langle z^{-1} x y x^{-1}\right\rangle$ since $x y^{-1} x^{-1} z$ and $z^{-1} x y x^{-1}$ are inverses and let $x=x_{1}, y=x_{2}$, and $x=x_{3}$. Then we get

$$
\pi_{1}(X, p) \cong\left\langle x_{1}, x_{2}, x_{3} \mid x_{3}^{-1} x_{1} x_{2} x_{1}^{-1}\right\rangle \cong\left\langle x_{1}, x_{2}, x_{3} \mid x_{1} x_{2} x_{1}^{-1}=x_{3}\right\rangle
$$

References

[1] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2001.

