The Wirtinger Presentation

Jamie Pearce

Fall 2020

The study of knots is an active area of modern mathematical research. Much of their study concerns the creation and computation of various *knot invariants*—algebraic objects associated to each knot which can be used to distinguish non-equivalent knots from each other. Many such invariants exist, but a well known one is the fundamental group of the complement of a knot, otherwise called the *knot group*. In this paper we present a computation of this invariant for a knot embedded in 3-space.

The *Wirtinger presentation* is a finite group presentation of the fundamental group of the complement of a knot in 3-space. First, we write down some definitions

Definition. A knot is an embedding of S^1 in \mathbb{R}^3 .

Definition. The **fundamental group** of X based at x_0 , $\pi_1(X, x_0)$, is the set of equivalence classes of loops based at x_0 with binary operation $[\alpha][\gamma] = [\alpha \cdot \gamma]$.

Definition. A **CW-complex** is any space X which can be constructed by starting off with a discrete collection of points called 0-cells that make up the 0-skeleton X^0 , then attaching 1-cells e^1_{α} to X^0 along their boundaries S^0 , writing X^1 for the 1-skeleton obtained by attaching the 1-cells to X^0 , then attaching 2-cells e^2_{α} to X^1 along their boundaries S^1 , writing X^2 for the 2-skeleton, and so on, giving spaces X^n for every n. A CW-complex is any space that has this sort of decomposition into subspaces X^n built up in such a way that the X^n s exhaust all of X. In particular, X^n may be built from X^{n-1} by attaching infinitely many n-cells e^n_{α} , and the attaching maps $S^{n-1} \to X^{n-1}$ may be any continuous maps.

Definition. A deformation retract of a space X onto a subspace A is a family of maps $f_t : X \to X, t \in I$, such that $f_0 = id$ (the identity map), $f_1(X) = A$, and $f_t | A = id$ for all t. The family f_t should be continuous in the sense that the associated map $X \times I \to X, (x, t) \mapsto f_t(x)$ is continuous.

To begin, let K be a smooth or piecewise linear knot in \mathbb{R}^3 . Position the knot to lie almost flat, so that K consists of finitely many disjoint arcs α_i and finitely many disjoint arcs B_l where K crosses over itself as shown in the first figure above. Now, we build a 2-dimensional CW-complex X that is a deformation retract

of $\mathbb{R}^3 - K$. First, just above each arc α_i place a long, thin rectangular strip R_i , curved to run parallel to α_i along the full length of α_i and arched so that the two long edges of R_i are identified with points of the rectangle T. This is shown in the second figure. Any arcs B_l that cross over α_i are positioned to lie in R_i . Then, over each are B_l put a square S_l , bent downward along its four edges so that these edges are identified with points of three strips R_i, R_j , and R_k as in the third figure. The knot K is now a subspace of X, but after we lift K up slightly into the complement of X, it becomes a deformation retract of $\mathbb{R}^3 - K$.

Theorem. The fundamental group of $\mathbb{R}^3 - K$, $\pi_1(\mathbb{R}^3 - K)$, has a group presentation with one generator x_i for each strip R_i and one relation of the form $x_i x_j x_i^{-1} = x_k$ for each square S_l .

Notice that the loops based at p at opposite ends of the strips are homotopy equivalent. Intuitively, the yellow loop can continuously deform into the green loop via the strip R_i . Similarly, the pink loop can continuously deform into the blue loop via R_j and the purple loop can continuously deform into the orange loop via R_k .

After attaching the square S_l , we see that the loop x_k is homotopy equivalent to the loop $x_i x_j x_i^{-1}$ via S_l .

In the proof of the Theorem we will use the following Proposition and figures:

Proposition 1. (Proposition 1.26 in [1]) Suppose we attach a collection of 2-cells e_{α}^2 to a path-connected space X via maps $\varphi_{\alpha} : S^1 \to X$, producing a space Y. If s_0 is a basepoint of S^1 then φ_{α} determines a loop based at $\varphi_{\alpha}(s_0)$ called φ_{α} . For different α 's the basepoints of the loops φ_{α} may vary. Choose a basepoint $x_0 \in X$ and a path γ_{α} in X from x_0 to $\varphi_{\alpha}(s_0)$ for each α . Then $\gamma_{\alpha}\varphi_{\alpha}\gamma_{\alpha}^{-1}$ is a loop at x_0 where $\gamma_{\alpha}^{-1}(t) = \gamma_{\alpha}(1-t)$ is the path inverse. The inclusion $X \hookrightarrow Y$ induces a surjection $\pi_1(X, x_0) \to \pi_1(Y, x_0)$ whose kernel is the normal subgroup N generated by all the loops $\gamma_{\alpha}\varphi_{\alpha}\gamma_{\alpha}^{-1}$ for varying α . Thus, $\pi_1(Y) \cong \pi_1(X)/N$.

Proof. It is sufficient to prove $\pi_1(X, p) \cong \langle x_1, x_2, x_3 | x_1x_2x_1^{-1} = x_3 \rangle$. Let Z be the one-dimensional space in Figure A. Notice that $\pi_1(Z, p) \cong \langle x, y, z, x', y', z' \rangle$ where the loops are defined as

$$x = a_3 a_1 c_1 b_1 a_1^{-1} a_3^{-1}$$
$$y = a_2 c_2 b_2 a_2^{-1}$$
$$z = a_3 b_3$$
$$x' = a'_1 b'_1 c'_1 a'_1^{-1}$$
$$y' = a_2 a'_2 c'_2 b'_2 a'_2^{-1} a_2^{-1}$$
$$z' = a'_2 b'_2 c'_2 a'_2^{-1}.$$

Next, attach the 2-cells R_1, R_2 , and R_3 to Z in the following way: attach R_1 via the homomorphism $\varphi_1 : S^1 \to \mathbb{Z}$ where $\varphi_1 = a'_1 b'_1 d_1 c_2 d_4^{-1} c_1^{-1} a_1^{-1} a_3^{-1}$, R_2 via the homomorphism $\varphi_2 : S^1 \to \mathbb{Z}$ where $\varphi_2 = a'_2 b'_2^{-1} d_2 b_2$, and R_3 via the homomorphism $\varphi_3 : S^1 \to \mathbb{Z}$ where $\varphi_3 = b_3^{-1} d_3^{-1} c'_3 a'_3^{-1}$. Now we have the space Y shown in Figure B. By Proposition 1, $\pi_1(Y,p) \cong \pi_1(Z,p)/N$ where $N = \langle \varphi_1, a_2 \varphi_2 a_2^{-1}, \varphi_3 \rangle$. Let $r_1 = a'_1 c'_1^{-1} d_1 c_2 d_4^{-1} b_1 a_1^{-1} a_3^{-1}$, $r_2 = a_2 a'_2 c'_2 d_2 c_2^{-1} a_2^{-1}$, and $r_3 = a_3 d_3^{-1} b'_3^{-1} a'_3^{-1}$ such that $x' r_1 x^{-1} = (a'_1 b'_1 c'_1 a'_1^{-1} (a'_1 c^{-1} d_1 c_2 d_4^{-1} b_1 a_1^{-1} a_3^{-1}) (a_3 a_1 b_1^{-1} c_1^{-1} a_1^{-1} a_3^{-1}) = a'_1 b'_1 d_1 c_2 d_4^{-1} c_1^{-1} a_1^{-1} a_3^{-1} = (a'_1 b'_1 c'_1 a'_1^{-1} a_2^{-1} a'_2^{-1} a'_2^{-1}) (a_2 a'_2 c'_2 d_2 c_2^{-1} a_2^{-1}) = a_2 a'_2 b'_2^{-1} d_2 b_2 a_2^{-1} = a_2 \varphi_2 a_2^{-1}$, and $z^{-1} r_3 z' = (a_2 a'_2 b'_2^{-1} c'_2^{-1} a'_2^{-1} a'_2^{-1}) (a'_2 a'_2 c'_2 d_2 c_2^{-1} a_2^{-1}) (a_2 c_2 b_2 a_2^{-1}) = a_2 a'_2 b'_2^{-1} d_2 b_2 a_2^{-1} = a_2 \varphi_2 a_2^{-1}$, and $z^{-1} r_3 z' = (b_3^{-1} a_3^{-1}) (a_3 d_3^{-1} b'_3^{-1} a'_3^{-1}) = \varphi_3$. Since r_1, r_2, r_3 are homotopic to the constant path at p, we get that $\varphi_1 \simeq x' x^{-1}$, $a_2 \varphi_2 a_2^{-1} \simeq y'^{-1} y$, and $\varphi_3 \simeq z^{-1} z'$. Therefore, $\pi_1(Y, p) \cong \langle x, y, z, x', y', z' \mid x' x^{-1}, y'^{-1} y, z^{-1} z' \rangle \cong \langle xN, yN, zN \rangle \cong \langle x, y, z \rangle$. The loops x, y, z are shown in Figure B.

Now, we contruct the space X by adding a 2-cell S_1 to the space Y via the homomorphism $\phi_1 = e_1e_2e_3e_4$ where e_1, e_2, e_3, e_4 are the edges of the square S_1 orientated counterclockwise starting at p. Then $\phi_1 \simeq xy^{-1}x^{-1}z$. By Proposition 1, $\pi_1(X,p) \cong \pi_1(Y,p)/M$ where $M = \langle xy^{-1}x^{-1}z \rangle$. Thus, $\pi_1(X,p) \cong \langle x, y, z | xy^{-1}x^{-1}z \rangle$. Finally, note that $\langle xy^{-1}x^{-1}z \rangle = \langle z^{-1}xyx^{-1} \rangle$ since $xy^{-1}x^{-1}z$ and $z^{-1}xyx^{-1}$ are inverses and let $x = x_1, y = x_2$, and $x = x_3$. Then we get

$$\pi_1(X,p) \cong \langle x_1, x_2, x_3 \mid x_3^{-1} x_1 x_2 x_1^{-1} \rangle \cong \langle x_1, x_2, x_3 \mid x_1 x_2 x_1^{-1} = x_3 \rangle.$$

References

[1] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2001.