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The study of knots is an active area of modern mathematical research. Much of their study concerns the
creation and computation of various knot invariants—algebraic objects associated to each knot which can
be used to distinguish non-equivalent knots from each other. Many such invariants exist, but a well known
one is the fundamental group of the complement of a knot, otherwise called the knot group. In this paper
we present a computation of this invariant for a knot embedded in 3-space.

The Wirtinger presentation is a finite group presentation of the fundamental group of the complement
of a knot in 3-space. First, we write down some definitions

Definition. A knot is an embedding of S1 in R3.

Definition. The fundamental group of X based at x0, π1(X,x0), is the set of equivalence classes of loops
based at x0 with binary operation [α][γ] = [α · γ].

Definition. A CW-complex is any space X which can be constructed by starting off with a discrete col-
lection of points called 0-cells that make up the 0-skeleton X0, then attaching 1-cells e1α to X0 along their
boundaries S0, writing X1 for the 1-skeleton obtained by attaching the 1-cells to X0, then attaching 2-cells
e2α to X1 along their boundaries S1, writing X2 for the 2-skeleton, and so on, giving spaces Xn for every n.
A CW-complex is any space that has this sort of decomposition into subspaces Xn built up in such a way that
the Xns exhaust all of X. In particular, Xn may be built from Xn−1 by attaching infinitely many n-cells
enα, and the attaching maps Sn−1 → Xn−1 may be any continuous maps.

Definition. A deformation retract of a space X onto a subspace A is a family of maps ft : X → X, t ∈ I,
such that f0 = id (the identity map), f1(X) = A, and ft|A = id for all t. The family ft should be continuous
in the sense that the associated map X × I → X, (x, t) 7→ ft(x) is continuous.

To begin, let K be a smooth or piecewise linear knot in R3. Position the knot to lie almost flat, so that
K consists of finitely many disjoint arcs αi and finitely many disjoint arcs Bl where K crosses over itself as
shown in the first figure above. Now, we build a 2-dimensional CW-complex X that is a deformation retract
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of R3 −K. First, just above each arc αi place a long, thin rectangular strip Ri, curved to run parallel to
αi along the full length of αi and arched so that the two long edges of Ri are identified with points of the
rectangle T . This is shown in the second figure. Any arcs Bl that cross over αi are positioned to lie in Ri.
Then, over each are Bl put a square Sl, bent downward along its four edges so that these edges are identified
with points of three strips Ri, Rj , and Rk as in the third figure. The knot K is now a subspace of X, but
after we lift K up slightly into the complement of X, it becomes a deformation retract of R3 −K.

Theorem. The fundamental group of R3 −K, π1(R3 −K), has a group presentation with one generator xi
for each strip Ri and one relation of the form xixjx

−1
i = xk for each square Sl.

Notice that the loops based at p at opposite ends of the strips are homotopy equivalent. Intuitively,
the yellow loop can continuously deform into the green loop via the strip Ri. Similarly, the pink loop can
continuously deform into the blue loop via Rj and the purple loop can continuously deform into the orange
loop via Rk.

After attaching the square Sl, we see that the loop xk is homotopy equivalent to the loop xixjx
−1
i via

Sl.
In the proof of the Theorem we will use the following Proposition and figures:

Proposition 1. (Proposition 1.26 in [1]) Suppose we attach a collection of 2-cells e2α to a path-connected space
X via maps ϕα : S1 → X, producing a space Y . If s0 is a basepoint of S1 then ϕα determines a loop based
at ϕα(s0) called ϕα. For different α’s the basepoints of the loops ϕα may vary. Choose a basepoint x0 ∈ X
and a path γα in X from x0 to ϕα(s0) for each α. Then γαϕαγ

−1
α is a loop at x0 where γ−1α (t) = γα(1− t)

is the path inverse. The inclusion X ↪→ Y induces a surjection π1(X,x0) → π1(Y, x0) whose kernel is the
normal subgroup N generated by all the loops γαϕαγ

−1
α for varying α. Thus, π1(Y ) ∼= π1(X)/N .
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Proof. It is sufficient to prove π1(X, p) ∼= 〈x1, x2, x3 | x1x2x−11 = x3〉. Let Z be the one-dimensional space
in Figure A. Notice that π1(Z, p) ∼= 〈x, y, z, x′, y′, z′〉 where the loops are defined as

x = a3a1c1b1a
−1
1 a−13

y = a2c2b2a
−1
2

z = a3b3

x′ = a′1b
′
1c
′
1a
′−1
1

y′ = a2a
′
2c
′
2b
′
2a
′−1
2 a−12

z′ = a′3b
′
3c
′
3a
′−1
3 .

Next, attach the 2-cells R1, R2, and R3 to Z in the following way: attach R1 via the homomorphism
ϕ1 : S1 → Z where ϕ1 = a′1b

′
1d1c2d

−1
4 c−11 a−11 a−13 , R2 via the homomorphism ϕ2 : S1 → Z where ϕ2 =

a′2b
′−1
2 d2b2, and R3 via the homomorphism ϕ3 : S1 → Z where ϕ3 = b−13 d−13 c′3a

′−1
3 . Now we have

the space Y shown in Figure B. By Proposition 1, π1(Y, p) ∼= π1(Z, p)/N where N = 〈ϕ1, a2ϕ2a
−1
2 , ϕ3〉.

Let r1 = a′1c
′−1
1 d1c2d

−1
4 b1a

−1
1 a−13 , r2 = a2a

′
2c
′
2d2c

−1
2 a−12 , and r3 = a3d

−1
3 b′−13 a′−13 such that x′r1x

−1 =
(a′1b

′
1c
′
1a
′−1
1 )(a′1c

′−1
1 d1c2d

−1
4 b1a

−1
1 a−13 )(a3a1b

−1
1 c−11 a−11 a−13 ) = a′1b

′
1d1c2d

−1
4 c−11 a−11 a−13 = ϕ1, y′−1r2y =

(a2a
′
2b
′−1
2 c′−12 a′−12 a−12 )(a2a

′
2c
′
2d2c

−1
2 a−12 )(a2c2b2a

−1
2 ) = a2a

′
2b
′−1
2 d2b2a

−1
2 = a2ϕ2a

−1
2 , and z−1r3z

′ =
(b−13 a−13 )(a3d

−1
3 b′−13 a′−13 )(a′3b

′
3c
′
3a
′−1
3 ) = ϕ3. Since r1, r2, r3 are homotopic to the constant path at p, we get

that ϕ1 ' x′x−1, a2ϕ2a
−1
2 ' y′−1y, and ϕ3 ' z−1z′. Therefore, π1(Y, p) ∼= 〈x, y, z, x′, y′, z′ | x′x−1, y′−1y, z−1z′〉 ∼=

〈xN, yN, zN〉 ∼= 〈x, y, z〉. The loops x, y, z are shown in Figure B.
Now, we contruct the space X by adding a 2-cell S1 to the space Y via the homomorphism φ1 =

e1e2e3e4 where e1, e2, e3, e4 are the edges of the square S1 orientated counterclockwise starting at p. Then
φ1 ' xy−1x−1z. By Proposition 1, π1(X, p) ∼= π1(Y, p)/M where M = 〈xy−1x−1z〉. Thus, π1(X, p) ∼=
〈x, y, z | xy−1x−1z〉. Finally, note that 〈xy−1x−1z〉 = 〈z−1xyx−1〉 since xy−1x−1z and z−1xyx−1 are inverses
and let x = x1, y = x2, and x = x3. Then we get

π1(X, p) ∼= 〈x1, x2, x3 | x−13 x1x2x
−1
1 〉 ∼= 〈x1, x2, x3 | x1x2x

−1
1 = x3〉.
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